extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1C33 = C6xC3wrC3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | | (C3xC6).1C3^3 | 486,210 |
(C3xC6).2C33 = C6xHe3.C3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 162 | | (C3xC6).2C3^3 | 486,211 |
(C3xC6).3C33 = C6xHe3:C3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 162 | | (C3xC6).3C3^3 | 486,212 |
(C3xC6).4C33 = C6xC3.He3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 162 | | (C3xC6).4C3^3 | 486,213 |
(C3xC6).5C33 = C2xC9.He3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 3 | (C3xC6).5C3^3 | 486,214 |
(C3xC6).6C33 = C2xC33:C32 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).6C3^3 | 486,215 |
(C3xC6).7C33 = C2xHe3.C32 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).7C3^3 | 486,216 |
(C3xC6).8C33 = C2xHe3:C32 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).8C3^3 | 486,217 |
(C3xC6).9C33 = C2xC32.C33 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).9C3^3 | 486,218 |
(C3xC6).10C33 = C2xC9.2He3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).10C3^3 | 486,219 |
(C3xC6).11C33 = C3xC6x3- 1+2 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 162 | | (C3xC6).11C3^3 | 486,252 |
(C3xC6).12C33 = C6xC9oHe3 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 162 | | (C3xC6).12C3^3 | 486,253 |
(C3xC6).13C33 = C2x3+ 1+4 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).13C3^3 | 486,254 |
(C3xC6).14C33 = C2x3- 1+4 | φ: C33/C32 → C3 ⊆ Aut C3xC6 | 54 | 9 | (C3xC6).14C3^3 | 486,255 |
(C3xC6).15C33 = C6xC32:C9 | central extension (φ=1) | 162 | | (C3xC6).15C3^3 | 486,191 |
(C3xC6).16C33 = C6xC9:C9 | central extension (φ=1) | 486 | | (C3xC6).16C3^3 | 486,192 |
(C3xC6).17C33 = C2xC92:3C3 | central extension (φ=1) | 162 | | (C3xC6).17C3^3 | 486,193 |
(C3xC6).18C33 = C18xHe3 | central extension (φ=1) | 162 | | (C3xC6).18C3^3 | 486,194 |
(C3xC6).19C33 = C18x3- 1+2 | central extension (φ=1) | 162 | | (C3xC6).19C3^3 | 486,195 |
(C3xC6).20C33 = C2xC32:He3 | central extension (φ=1) | 54 | | (C3xC6).20C3^3 | 486,196 |
(C3xC6).21C33 = C2xC34.C3 | central extension (φ=1) | 54 | | (C3xC6).21C3^3 | 486,197 |
(C3xC6).22C33 = C2xC9:He3 | central extension (φ=1) | 162 | | (C3xC6).22C3^3 | 486,198 |
(C3xC6).23C33 = C2xC32.23C33 | central extension (φ=1) | 162 | | (C3xC6).23C3^3 | 486,199 |
(C3xC6).24C33 = C2xC9:3- 1+2 | central extension (φ=1) | 162 | | (C3xC6).24C3^3 | 486,200 |
(C3xC6).25C33 = C2xC33.31C32 | central extension (φ=1) | 162 | | (C3xC6).25C3^3 | 486,201 |
(C3xC6).26C33 = C2xC92:7C3 | central extension (φ=1) | 162 | | (C3xC6).26C3^3 | 486,202 |
(C3xC6).27C33 = C2xC92:4C3 | central extension (φ=1) | 162 | | (C3xC6).27C3^3 | 486,203 |
(C3xC6).28C33 = C2xC92:5C3 | central extension (φ=1) | 162 | | (C3xC6).28C3^3 | 486,204 |
(C3xC6).29C33 = C2xC92:8C3 | central extension (φ=1) | 162 | | (C3xC6).29C3^3 | 486,205 |
(C3xC6).30C33 = C2xC92:9C3 | central extension (φ=1) | 162 | | (C3xC6).30C3^3 | 486,206 |